
micromachines

Article

In-DRAM Cache Management for Low Latency and
Low Power 3D-Stacked DRAMs

Ho Hyun Shin 1,2 and Eui-Young Chung 2,*
1 Samsung Electronics Company, Ltd., Hwasung 18448, Korea; hhshin@yonsei.ac.kr
2 School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea
* Correspondence: eychung@yonsei.ac.kr; Tel.: +82-2-2123-5866

Received: 24 December 2018; Accepted: 5 February 2019; Published: 14 February 2019
����������
�������

Abstract: Recently, 3D-stacked dynamic random access memory (DRAM) has become a promising
solution for ultra-high capacity and high-bandwidth memory implementations. However, it also suffers
from memory wall problems due to long latency, such as with typical 2D-DRAMs. Although there are
various cache management techniques and latency hiding schemes to reduce DRAM access time, in a
high-performance system using high-capacity 3D-stacked DRAM, it is ultimately essential to reduce
the latency of the DRAM itself. To solve this problem, various asymmetric in-DRAM cache structures
have recently been proposed, which are more attractive for high-capacity DRAMs because they can
be implemented at a lower cost in 3D-stacked DRAMs. However, most research mainly focuses on
the architecture of the in-DRAM cache itself and does not pay much attention to proper management
methods. In this paper, we propose two new management algorithms for the in-DRAM caches to achieve
a low-latency and low-power 3D-stacked DRAM device. Through the computing system simulation,
we demonstrate the improvement of energy delay product up to 67%.

Keywords: 3D-stacked; DRAM; in-DRAM cache; low-latency; low-power

1. Introduction

The latency of dynamic random access memory (DRAM) has been a critical issue for two primary
reasons [1]. Firstly, while the processing speed of central processing unit (CPU) has been continuously
improved, DRAM latency has remained relatively unchanged for decades. This speed gap, called the
memory wall, causes significant bottlenecks in the overall computing performance [2,3]. As shown in
Figure 1a, while the capacity and bandwidth have increased 16 and 6 times over time, respectively,
the timing constraints representing the DRAM latency, row address to column address delay (tRCD) and
row cycle time (tRC), have only been improved by 11.2% and 20.0%, respectively [4–7].

Secondly, the processing speed of big data workloads is affected by the memory latency, as well
as bandwidth. Russell et al. proved that the instructions per cycle of the applications dealing with big
data could be significantly improved by reducing the DRAM latency [8]. This is because the data stream
of big data is likely to have large dependency between its elements. In particular, on-line transaction
processing (OLTP), which supports high transaction-oriented applications, is a representative example of
latency-sensitive applications [9]. In addition, recent AI applications require large amounts of memory
to handle large amounts of data, and require low latency to provide real-time data processing. In other
words, we expect to see an increasing number of applications that simultaneously demand high capacity
and low latency.

Micromachines 2019, 10, 124; doi:10.3390/mi10020124 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-3360-6864
https://orcid.org/0000-0003-2013-8763
http://www.mdpi.com/2072-666X/10/2/124?type=check_update&version=1
http://dx.doi.org/10.3390/mi10020124
http://www.mdpi.com/journal/micromachines


Micromachines 2019, 10, 124 2 of 15

0

5

10

15

20

25

0

2

4

6

8

10

DDR‐400 DDR2‐800 DDR3‐1600 DDR4‐2400

B
a
n
d
w
id
th
 (
G
B
/s
ec
)

C
a
p
a
ci
ty
 (
G
B
) Capacity

Bandwidth

(a)

10

30

50

70

12

14

16

18

DDR‐400 DDR2‐800 DDR3‐1600 DDR4‐2400

tR
C
 (
n
s)

tR
C
D
 (
n
s)

tRCD

tRC

(b)

Figure 1. Comparison of dynamic random access memory (DRAM) capacity, bandwidth, and latency
improvement by DRAM generation [4–7]. (a) Capacity and bandwidth of DRAM. (b) DRAM access latency:
row address to column address delay (tRCD) and row cycle time (tRC).

DRAM devices are being transformed into various structures as a result of recent developments
in die stacking through silicon via (TSV) [10]. For example, the die stacking of homogeneous DRAM
chips extends their capacity without power and performance losses [11,12]. Moreover, a heterogeneous
combination of logic and DRAM dies, such as for a high-bandwidth memory (HBM) or hybrid memory
cube (HMC), increases the data bandwidth without a significant power overhead [13,14]. The meaning
of the power implied above is precisely the power relative to the performance value, such as capacity
and bandwidth. For example, when comparing Graphic Double Data Rate 5 (GDDR5) and HBM with the
same capacity and bandwidth performance, HBM’s power consumption is significantly smaller. However,
though they have enhanced the memory sub-system in terms of capacity and bandwidth, the latency
improvements have been neglected.

In order to overcome the long latency problem of DRAM, many computers embed numerous caches
in the CPU. The cache not only overcomes the long latency of DRAM, but it also provides data locality for
the pre-fetched pages. Thus, it offers large bandwidth locally in a CPU. However, since a typical cache
is implemented using static random access memory (SRAM), it incurs large costs and consumes a high
amount of leakage power. As a result, it is essential to reduce the DRAM latency itself to improve memory
access latency (In this paper, DRAM latency refers to the time required for a DRAM controller to read or
write data to a DRAM device, and memory access latency represents the latency required to access the
data of the cache or DRAM by the processor instructions.).

The in-DRAM cache, which is embedded in a DRAM device, has several unique characteristics that
differ from the processor cache [15]. First, the cache itself is placed in the DRAM, but its operation is
managed by the DRAM controller. This is because the interface between the controller and the DRAM
follows the DRAM timing constraints specified in joint electron device engineering council (JEDEC),
which maintains high compatibility with the current computing system. Of course, there are various
ways to implement the in-DRAM cache and its manager, such as operating systems (OS) or processor
modifications. However, such methods require many modifications to the current computing system, and
eventually degrade compatibility. We designed the manager to the DRAM controller so that the proposed
method could follow the JEDEC specification, and implemented the in-DRAM cache in the DRAM device.



Micromachines 2019, 10, 124 3 of 15

Secondly, the capacity of the in-DRAM cache increases proportionally to the DRAM capacity and is much
larger than the processor cache. For example, when hundreds of gigabytes of DRAM are mounted in a
system, while the memory capacity of the processor cache remains constant at several hundred megabytes,
the capacity of the in-DRAM cache can be up to tens of gigabytes. However, this large-capacity in-DRAM
cache requires a larger tag size. This results in long tag access latency, which in turn increases the overall
memory access latency. To overcome this problem, the data transfer granularity between the DRAM and
in-DRAM cache, which is called cache block size, must be increased. However, this causes significant
power consumption.

Power issues in DRAMs are very important in terms of minimizing the energy consumed by the
DRAM chip itself, and are also critical parameters for 3D-stacked DRAMs from a thermal point of view.
Since a 3D-stacked DRAM chip consists of several dies, it is very difficult to emit the heat generated
inside the chip to the outside. This heat degrades the retention characteristics of the DRAM cells, and
thus DRAM requires a shorter refresh cycle. However, reducing the refresh cycle of the high-capacity
3D-stacked DRAM results in more heat, which causes the retention time of the DRAM cell to decrease
again. Therefore, thermal problems in 3D-stacked DRAMs are very sensitive design parameters and must
be overcome.

Considering various properties of the in-DRAM cache, this paper proposes two new in-DRAM cache
management algorithms for the data replacement, particularly to maximize its efficiency and minimize its
energy consumption. In addition, the proposed management algorithms are not tied to a specific in-DRAM
cache architecture, and can be appropriately adapted to general architectures.

2. Background and In-Dynamic Random Access Memory (DRAM) Cache Architecture

A DRAM chip consists of the DRAM cell array area and peripheral circuits, including several in-out
ports (Figure 2). Here, the DRAM cell region is composed of a plurality of sub-arrays, including DRAM
cells and bit-line sense amplifiers. As mentioned in Section 1, DRAM latency improvements are very
slow, and there are many reasons for this. The reason for the slow latency improvement is directly
related to cost and power consumption [16,17]. In order to reduce the sensing and pre-charge time,
for example, the number of cells connected per bit-line should be reduced [18]. However, this leads to
an increase in the number of bit-line sense amplifiers, and thus increases the chip size. Moreover, timing
constraints, such as CAS latency (tCL) are mainly influenced by the speed of the data path. In order to
improve this speed, the capacitive metal loading of the data path signal should be decreased, or its driver
strength should be increased. However, these approaches may increase the cost or power consumption.
Consequently, the latency of a DRAM device must be optimized with the simultaneous consideration of
multiple side-effects. In this paper, we focus on the in-DRAM cache among various skills to reduce the
latency of DRAM, and discuss its management method.



Micromachines 2019, 10, 124 4 of 15

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

DRAM
cell

array

Peripheral
circuits
…
…

bit line sense amplifier

bit line sense amplifier

bit line sense amplifier

bit line sense amplifier

DRAM cell array

DRAM cell array

bi
t l

in
e

word line

In-out port

Figure 2. Conventional DRAM structure.

We deal with three types of in-DRAM cache structures based on recently published tiered-latency
DRAM (TL-DRAM) and center high-aspect-ratio mats (CHARM) [19,20].

• TL-DRAM: This divides the bit line of the DRAM array into two segments and uses the long one as
the DRAM memory, and the short one as the in-DRAM cache [19,21]. Here, the TL-DRAM exploits
the characteristic that the short bit line improves the sensing and the pre-charge speed, and uses it
as a cache memory. Figure 3a shows the TL-DRAM architecture, which is the same in terms of the
overall DRAM structure. However, the DRAM array belonging to one bank is different from the
conventional one.

• Cache-die: This utilizes a single die among the 3D-stacked dies as the cache (Figure 3b). The in-DRAM
cache can be implemented as SRAM or DRAM, but only the DRAM is covered in this paper. This
architecture has the advantage of being able to implement a significant amount of cache capacity, but
it has the disadvantage of requiring a large area overhead.

• Cache-bank: This is similar to the CHARM structure [20]. Some DRAM banks are used as low-latency
DRAM caches, and this paper calls them cache banks (Figure 3c). It has a smaller cache capacity
than the cache die, but it can significantly reduce the latency because the cache banks are close to the
input/output interfaces of the DRAM.

In this work, we consider the three types of in-DRAM architecture described above at the same time.
This is because the purpose of this paper is not to propose a new in-DRAM architecture, but to describe its
efficient management algorithms. The cache replacement policy is also important. The most representative
cache replacement algorithms are fist-in-first-out (FIFO) and least-recently-used (LRU). The FIFO policy
removes the first block accessed the first time, regardless of how often or how many times the cache is
accessed. Conversely, LRU discards the least recently used items first, and is a commonly used policy
because it generally exhibits better hit-ratio characteristics. However, since it takes a long time to find the
appropriate replacement items, it is not appropriate for in-DRAM caches that are very sensitive to latency.
Therefore, we chose to adopt the FIFO policy as the default replacement policy for the in-DRAM cache
due to its fast operating time. We tackle these issues in Sections 3 and 4 in more detail.



Micromachines 2019, 10, 124 5 of 15

(b) DRAM + Cache die (c) DRAM + Cache bank(a) TL‐DRAM

4H 5H 4H

TL‐DRAM bank DRAM bank

Cache
bank

Data in/out port

Figure 3. In-DRAM cache architectures.

3. Exploration of in-DRAM Cache Management

To design the in-DRAM cache and its management scheme, it is important to distinguish between
the properties of the typical caches and the in-DRAM caches [1]. This is because in-DRAM cache
management techniques are fundamentally based on the processor cache. This section describes the
key design parameters of the in-DRAM cache that are distinct from the processor cache.

3.1. Trade-Off between Capacity and Latency

The capacity of the in-DRAM cache is generally much larger than the processor cache. While
the processor cache, which is implemented by SRAM, has limited capacity growth due to the power
consumption and area overhead, since the in-DRAM cache is configured by DRAM cells, the capacity can
be expanded at a low cost. However, the capacity of such an in-DRAM cache is in a trade-off relation
with latency depending on how many cells are connected to a bit line. This is because as more cells are
connected to one bit line, the capacity of the DRAM increases, while the sensing speed decreases. Figure 4
shows the simulation program with integrated circuit emphasis (SPICE) simulation results of the tRCD
and tRP representing the sensing and pre-charge speed, respectively. The figure shows that when 64 cells
are connected to a bit line, tRCD and tRP are set to saturation. In addition, Figure 5 shows the waveform
of the bit line and cell node for the 512 and 64 cells per bit line. Based on these results, we assumed the 64
cells per bit line as the basic configuration of the in-DRAM cache.

5

10

15

512 256 128 64 32 16

La
te
n
cy
(n
s)

Cell / bitline

tRCD tRP

Figure 4. Changes in tRCD and tRP according to the various cells per bit line.



Micromachines 2019, 10, 124 6 of 15

0.0

0.6

1.2

50 55 60

Vo
lta

ge
 (V

)

Time (ns)

0.0

0.6

1.2

0 5 10 15 20 25
Vo

lta
ge

 (V
)

Time (ns)

Bitline
Bitline/
Cell Node

tRCD tRAS tRP

(a)

0.0

0.6

1.2

50 55 60

Vo
lta

ge
 (V

)

Time (ns)

0.0

0.6

1.2

0 5 10 15 20 25

Vo
lta

ge
 (V

)

Time (ns)

Bitline
Bitline/
Cell NodetRCD tRAS tRP

(b)

Figure 5. (a) SPICE simulation waveform with 512 cells per bit line, (b) Spice simulation waveform with 64
cells per a bit-line and pre-charge time.

3.2. Trade-Off between Tag Size and Power Consumption

The processor cache consists of data and tags in the CPU, which greatly reduces hundreds of
nanoseconds of memory-access latency to tens of nanoseconds. Therefore, even though the size of
the tag is large and its read-speed is somewhat slow, it is not a big deal on the overall memory access time.
On the other hand, although the capacity of the in-DRAM cache is large and its hit ratio is thus quite high,
the latency that can be reduced by the in-DRAM cache is only several nanoseconds. Therefore, it is very
important to minimize the tag access time.

The access time of the tag is influenced by the block size and the capacity of the in-DRAM cache.
The larger the cache capacity or the smaller the cache block size, the larger the tag size. Figure 6 shows
that the tag size grows from several KB to tens of MB depending on the block size and the capacity.

0.01
0.1
1

10
100

64
B

12
8B

25
6B

51
2B 1K
B

2K
B

4K
B

8K
B

64
B

12
8B

25
6B

51
2B 1K
B

2K
B

4K
B

8K
B

64
B

12
8B

25
6B

51
2B 1K
B

2K
B

4K
B

8K
B

64
B

12
8B

25
6B

51
2B 1K
B

2K
B

4K
B

8K
B

64MB 256MB 1GB 4GB

Ta
g 
Si
ze
 (M

B)

Cache block size / Capacity of in‐DRAM cache

Figure 6. Tag-size variation with the block size and the capacity of in-DRAM cache.

There are two ways to reduce the tag size. One is to reduce the capacity of the cache, and the other
is to increase the cache block size. However, the former is not the ultimate goal of an in-DRAM cache.
Therefore, we should increase the cache block size, which has other side-effects. Firstly, a cache block
size which is too large can cause significant time overhead and power consumption for the data transfer.
Secondly, for applications with low locality, it lowers the hit ratio of the in-DRAM cache. Therefore,
it needs to design very sophisticated cache management techniques that considers these aspects.



Micromachines 2019, 10, 124 7 of 15

4. Proposed In-DRAM Cache Management Algorithms

Typical DRAMs use a rank and bank interleaving policy to maximize data bandwidth. It maximizes
the reuse rate of any pre-activated row address. This property motivated us to define the block size of
the in-DRAM cache as the total data contained in a specific row address of all ranks and banks in the
3D-stacked DRAM. This method is disadvantageous in terms of time and power consumption, because a
single data transfer operation moves hundreds of KB of data at the same time. On the other hand, it has
the advantage that the tag access time can be reduced by minimizing the tag size. Therefore, it is important
to maximize the hit ratio of the in-DRAM cache and to minimize the performance and power damage
caused by the transfer. We discuss how to effectively utilize the in-DRAM cache by proposing two new
in-DRAM cache management algorithms in the sections below.

4.1. Critical Data Detection and Evaluation Scheme

The Critical Data Detection and Evaluation (CDDE) scheme is designed to maximize the hit ratio of
an in-DRAM cache. This is a technique that evaluates and replaces the criticality of new data, rather than
replacing it with new data unconditionally when a cache miss occurs. Therefore, the proposed technique is
divided into the critical data detection stage and evaluation stage. Figure 7 shows the brief description of
the proposed algorithm. A unit cycle to determine a data transfer is defined by multiple activation counts,
called T1. T1 is divided into four steps, as shown below.

• Step 1: The algorithm finds the most frequently accessed row address (First_Row).
• Step 2: The in-DRAM cache manager selects a candidate entry (Replace_Row) to be replaced in the tag,

where the replacement policy can be the least recently used (LRU) or first-in first-out (FIFO) that are
similar to the legacy replacement policy [1]. In this paper, we use the FIFO, which can minimize the
time delay for the candidate selection.

• Step 3: It measures the reuse counts for the First_Row and Replace_Row, called RC_FR and RC_RR,
respectively, to define the more valuable one in terms of reuse.

• Step 4: The manager compares RC_FR and RC_RR and starts the transfer if RC_FR is larger than
RC_RR.

The CDDE scheme is an algorithm that allows in-DRAM caches to operate very carefully to maximize
hit ratios, but does not consider power consumption due to mass transfer. Therefore, we propose a new
in-DRAM cache management scheme that considers power consumption.

* Step 1
Find the most frequently
accessed row address (First_Row)

Data
Transfer

* Step 3
Measure reuse counts
(RC_FR, RC_RR)

* Step 2
Finding a replacement candidate entry from LUT (Replace_Row)
‐ RC_FR : Reuse counter for First_Row
‐ RC_RR : Reuse counter for Replace_Row

* Step 4
If (RC_FR > RC_RR) Migration(First_Row)

T1 = Multiple number of activation count

Figure 7. Descriptions of the proposed Critical Data Detection and Evaluation (CDDE) algorithm.



Micromachines 2019, 10, 124 8 of 15

4.2. Power-Aware in-DRAM Cache Management Algorithm

Although the operation of the in-DRAM cache increases the power consumption as a result of massive
data transfer, it also decreases the operating power owing to the reduced capacitance of the bit-line or
shortened signal line between the core and I/O pads. These facts provide us an opportunity to compensate
for the increase in transfer power. In other words, if the hit rate of the in-DRAM cache is sufficiently high
enough to compensate for the increased transfer power, the overall power of the DRAM device can be
maintained constant. In this work, we define several parameters. PN and αPN represent the amounts of
power consumed to access the normal DRAM and in-DRAM cache, respectively. Furthermore, we define
the transfer power as PM and the hit ratio of the in-DRAM cache as HR. Along with the defined parameters,
the total DRAM access energy over time of any activation count (CA) is calculated as Equation (1).

Eacc = {PN × tRC(1− HR) + αPN × tRC(HR)} × CA (1)

Equation (1) indicates that, as the hit rate of the in-DRAM cache increases, the overall access energy
decreases. We will fill the reduced energy with transfer energy.

Etran = PT × TT (2)

The transfer energy is calculated as shown in Equation (2), where PT represents the transfer power
consumed when the rows of all the ranks and banks are migrated. In addition, the TT indicates the time
needed for a data transfer.

In this paper, we limit the total energy of the proposed scheme to be less than that of normal DRAM
devices. Finally, Equation (3) shows the limiting condition.

Eacc + Etran < PN × tRC× CA (3)

From Equations (1)–(3), we conclude that the transfer counts are limited, as shown in Equation (4).

TT <
PN × tRC× CA(1− α)HR

PT
(4)

In Equation (4), all the parameters except HR of the right terms are predefined design parameters.
Therefore, if the proposed scheme can monitor HR in real time, the available TT can be calculated
periodically. The in-DRAM cache manager in the DRAM controller controls the T1 according to
Equation (4).

Figure 8 shows the hardware implementation of the proposed scheme. The shaded part—the
in-DRAM cache manager—must be added to the normal DRAM controller. The manager controls the
timing constraints, such as tRCD, tRP, tAA, tWR, and tRAS when the addresses of the issued commands
are included in the tag. The active counter identifies the four stages of CDDE, and the first row detector
determines the most frequently accessed row address. Finding the First_Row is done in real time whenever
an active row address is entered. The first row detector has as many counters as the number of bits in a
row address. For example, if a row address is configured from 0 to 15, there will be a total of 16 counters.
Therefore, when a row address is input, only the counters of bits corresponding to 1 out of the 16 bits
are incremented by 1. At the end of Step 1 of the CDDE algorithm, the first row detector compares the
total number of active inputs and the number of 1’s in each bit during step 1, and sets only the row
address bits that are more than half of the active counts to 1. Finally, it returns First_Row consisting only
of bits defined as 1 out of 16 bits. The reuse counter has two registers, one for storing the address of
First_Row and the other for storing the row address to be replaced. In addition, it has a counter for each
register, which increments each counter whenever a row address equal to the value of each register is



Micromachines 2019, 10, 124 9 of 15

input. Finally, it defines the more valuable row address in terms of hit rate with the counter output. Our
proposed approach is applicable regardless of whether it is an open- or closed-page policy. In other words,
the DRAM controllers using an open-page policy do not send multiple active commands continuously for
a single row address. However, due to the specification of DRAM which requires only one row address to
be activated in one bank, even if the open-page policy is used, there is a high possibility of accessing the
same row address discontinuously. The data transfer controller contains a hit history queue (HitQ) and a
transfer history queue (TransQ). It finally determines whether or not to execute a transfer according to the
power-aware management algorithm.□Modifications on the Memory Controller

CPU
side

DDR
Interface

DRAM
side

DRAM Controller

Active
Counter

First_Row
Detector

Latency
Controller

Command

Write
Queue

Read
Queue

Scheduler

Transaction
Buffer

Address
Mapping PH

Y 
In
te
rf
ac
e

Ro
w

Ad
dr
es
s

Reuse
Counter Tag

RA
0x1B4
0x12A
…

0x412

Data transfer
Controller
HitQ TransQ

Figure 8. Implementations of in-DRAM cache manager on the DRAM controller.

Our proposed in-DRAM cache structure consists only of tags and data. This is because it can minimize
tag access time, which is one of the most important factors of in-DRAM cache. Secondly, because it is not a
multilevel structure like a typical cache, the tags do not need bits to store various information. In addition,
our proposed in-DRAM cache operates in a write-through manner, minimizing the complexity of the cache
itself and eliminating the latency penalty.

The biggest overhead in the in-DRAM cache manager is a tag that occupies from 1.125 KB to 4.5 KB.
We used the CATTI tool to calculate its area and leakage power [22]. According to the CACTI tool, for a
32 nm technology, the tag requires 0.05 mm2 and consumes 1.2 mW standby leakage power. In addition,
the time overhead of the tag is expected to be 2 ns, which can be minimized because the tag does not have
any special information other than the row address and operates in a direct-mapped manner. Since the
HitQ and TransQ each consist of 64 entries, we assumed that the area or time overhead could be ignored.
The size of the tag may vary depending on the size of the in-DRAM cache. In contrast, the size of the HitQ
and TransQ does not depend on the capacity of the in-DRAM cache, which is one of the design parameters.

5. Experimental Results and Discussion

In this paper, we have proposed two new in-DRAM cache management techniques. The ultimate
goal of the both is to reduce DRAM latency by achieving maximum in-DRAM cache efficiency within a
given energy budget. To evaluate the performance of the proposed techniques, we modeled a computing
system including various 3D-stacked DRAM architectures using gem5 and DRAMSim2, a modular platform
for computer system architectures [23,24]. Table 1 shows the system and DRAM configurations used
in the system simulation of this paper. The cache block size of 256 KB is equal to the total data size
contained in a row address of all ranks and banks in the 3D-stacked DRAM. The tag for the in-DRAM



Micromachines 2019, 10, 124 10 of 15

cache is implemented in the DRAM controller with a direct-mapped manner by SRAM. We verify
the effectiveness of the proposed schemes for various workloads of the PARSEC benchmark suite
consisting of multi-threaded programs [25]. Table 2 summarizes the timing constraints for the normal
DRAM and in-DRAM cache, where the tAA and tWR of the in-DRAM cache are only applied to the
cache-bank architecture.

Table 1. System and dynamic random access memory (DRAM) configurations.

CPU Frequency 2 GHz

DRAM Types DDR3 1600 (800 MHz)

DRAM Capacity 2 GB

in-DRAM Cache Capacity
TL-DRAM: 256 MB
Cache-die: 512 MB

Cache-bank: 128 MB

Cache Block Size 256 KB

Tag Size
(DRAM controller)

TL-DRAM: 2.25 KB
Cache-die: 4.5 KB

Cache-bank: 1.125 KB

Row Buffer Policy Adaptive Open Page

DRAM cells per a bit line
512 (DRAM)

64 (in-DRAM cache)

DRAM cells per a word line 1024

Refresh Rate 64 ms

Bit line array structure Open bit-line

Transfer time per a row 128 * tCCD (5 ns) = 640 ns

Table 2. Timing constraints of the normal DRAM and the in-DRAM cache. ACT–activate, PRE–pre-charge,
RD–read, WR–write.

Paramter Symbol Normal DRAM in-DRAM Cache

Clock cycle tCK 1.25 ns 1.25 ns
ACT to internal RD or WR delay tRCD 13.75 ns 8.75 ns
PRE command period tRP 13.75 ns 8.75 ns
ACT-to-PRE command period tRAS 35.0 ns 15.0 ns
ACT-to-ACT command period tRC 48.75 ns 23.75 ns
Internal RD command to data tAA 13.75 ns 8.75 ns
Write recovery time tWR 15.0 ns 10.0 ns

Figure 9 shows the energy delay product (EDP) results for the TL-DRAM, cache die, and cache
bank architectures, which are managed by the conventional FIFO cache management (In this paper,
all experimental results are normalized for a typical 3D-stacked DRAM without an in-DRAM cache.).
As shown in Figure 9, TL-DRAM, which requires low transfer latency and power, has an average of 54%
improvement in EDP across all workloads, even when using a conventional cache management scheme.
However, for the cache die and cache bank, EDP increases by 2 and 1239 times, respectively, when the most
memory-intensive workload canneal is running. That is, if the data locality of the workload is low, data
transfer between the cache and the DRAM is more frequent and energy consumption due to the transfer
becomes more serious. In particular, such a phenomenon is exacerbated in a cache bank-like structure



Micromachines 2019, 10, 124 11 of 15

having a small cache capacity. These results show that typical cache management schemes are not suitable
for cache die and cache bank structures, although they may be appropriate for TL-DRAM, and require
new algorithms for them.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

blac body cann dedu face ferr flui freq stre swap x264 Avg.

N
or
m
. E
DP

TL‐DRAM CACHE DIE CACHE BANK

1238.5 9.3 3.3 4.2 114.7

Figure 9. Normalized energy delay product (EDP) results for the TL-DRAM, cache die, and cache bank
architecture which are managed by conventional FIFO cache management.

To evaluate the effectiveness of the CDDE scheme, we experimented with the latency, energy, and
EDP performance of 3D-stacked DRAMs with the TL-DRAM, cache die, and cache bank structures for
various transfer cycles (T1), and Figure 10 shows the results. As shown in Figure 10, TL-DRAM exhibits
better latency and EDP performance as the T1 is smaller, but the cache die and cache bank structure have
an optimal T1 in terms of EDP depending on the properties of the workloads. Since the CDDE scheme
helps prevent unnecessary data transfer between the in-DRAM cache and the DRAM, it can achieve better
EDP performance over conventional cache management techniques. In addition, CDDE minimizes the
EDP performance variation across the workloads compared to conventional management. When applying
the conventional management, the difference of normalized EDP is shown to be 0.5 to 1238, according
to the data locality (Figure 9). However, when CDDE is applied, it is shown to be 0.5 to 0.9. Despite the
benefits of CDDE, it suffers from low EDP efficiency because it has to use a fixed T1, even though different
T1s have to be applied to each application.



Micromachines 2019, 10, 124 12 of 15

51
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92

Latency Energy EDP

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine streamcluster swaptions x264

(a)

51
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92

Latency Energy EDP

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine streamcluster swaptions x264

(b)
51

2
10

24
20

48
40

96
81

9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
9251
2

10
24

20
48

40
96

81
92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92 51
2

10
24

20
48

40
96

81
92

Latency Energy EDP

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine streamcluster swaptions x264

(c)

Figure 10. Normalized latency, energy, and EDP of TL-DRAM (a), cache die (b), and cache bank (c)
structures for various unit cycles (T1) with CDDE.

In order to the overcome the drawbacks of CDDE, we implemented the power-aware in-DRAM
cache management algorithm and evaluated its performance. Figure 11 shows that the average latency
of 3D-stacked DRAMs improved by 22%, 25%, and 28% for the TL-DRAM, cache die, and cache bank,
respectively, and EDP by 53%, 53%, and 67%, respectively. Applying the conventional cache management
techniques to the in-DRAM cache, TL-DRAM had the best performance with 23% and 54% improvements
in latency and EDP, respectively. However, when the proposed CDDE and power-aware management
schemes were applied, the EDP of cache bank architecture showed 28% and 67% improvements in latency
and EDP, respectively. This implies that although the TL-DRAM has low time and energy consumption
for the data transfer, it is not sufficient to improve DRAM latency. In addition, adaptive management
techniques, such as CDDE and power-aware which were proposed in this paper, can more effectively
reduce DRAM latency in a structure that can basically maximize latency improvement, like cache die and
cache bank.



Micromachines 2019, 10, 124 13 of 15

0.0

0.2

0.4

0.6

0.8

1.0

blac body cann dedu face ferr flui freq stre swap x264 Avg.
N
or
m
. L
at
en

cy

REF TL‐DRAM CACHE DIE CACHE BANK

0.0

0.2

0.4

0.6

0.8

blac body cann dedu face ferr flui freq stre swap x264 Avg.

N
or
m
. E
DP

EDP improvement by power‐aware management

Figure 11. Normalized latency and EDP for the TL-DRAM, cache die, and cache bank architecture with the
proposed algorithm. REFs are the latency and EDP results of TL-DRAM with conventional management.

6. Conclusions

Despite the recent introduction of various in-DRAM cache architectures, there was a lack of interest
in how to manage them. In this paper, we studied how to derive optimal EDP by maximizing the hit ratio
of In-DRAM cache and reducing power consumption due to data transfer. As a result, we achieved an
improved EDP of 3D-stacked DRAM up to 67% compared to the conventional cache management scheme.
Typical cache management techniques have several limitations when applied to the in-DRAM cache,
and the effect depends on the architecture. However, the approach proposed in this paper demonstrates
consistent improvements across all architectures.

Author Contributions: H.H.S. designed the architecture and algorithm, and performed the experimental testing.
E.-Y.C. supervised the work and provided expertise.

Funding: This work was funded by the National Research Foundation of Korea (NRF), by the Korea government
(MSIP) (grant number 2016R1A2B4011799), by the Ministry of Trade, Industry & Energy (MOTIE) (grant number
10080722) and Korea Semiconductor Research Consortium (KSRC) support program for the development of the future
semiconductor device and by Samsung Electronics Company, Ltd., Hwasung, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DRAM dynamic random access memory
OLTP on-line transaction processing
TSV through silicon via
HBM high-bandwidth memory
HMC hybrid memory cube
SRAM static random access memory
CDDE critical data detection and evaluation
LRU least recently used
FIFO first-in first-out
EDP energy delay product



Micromachines 2019, 10, 124 14 of 15

References

1. Jacob, B.; Ng, S.; Wang, D. Memory Systems: Cache, DRAM, Disk; Morgan Kaufmann Publishers: Burlington, MA,
USA, 2010.

2. Wulf, W.A.; McKee, S.A. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Comput. Archit. News
1995, 23, 20–24. [CrossRef]

3. Wilkes, M.V. The Memory Gap and the Future of High Performance Memories. SIGARCH Comput. Archit. News
2001, 29, 2–7. [CrossRef]

4. JEDEC. DDR SDRAM STANDARD; JEDEC: Arlington, VA, USA, 2008.
5. JEDEC. DDR2 SDRAM STANDARD; JEDEC: Arlington, VA, USA, 2009.
6. JEDEC. DDR3 SDRAM STANDARD; JEDEC: Arlington, VA, USA, 2012.
7. JEDEC. DDR4 SDRAM STANDARD; JEDEC: Arlington, VA, USA, 2017.
8. Clapp, R.; Dimitrov, M.; Kumar, K.; Viswanathan, V.; Willhalm, T. A Simple Model to Quantify the Impact of

Memory Latency and Bandwidth on Performance. In Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Portland, OR, USA, 15–19 June 2015; ACM:
New York, NY, USA, 2015; pp. 471–472. [CrossRef]

9. Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.L.; Zhang, M. In-Memory Big Data Management and Processing: A Survey.
IEEE Trans. Knowl. Data Eng. 2015, 27, 1920–1948. [CrossRef]

10. Xie, Y.; Loh, G.H.; Black, B.; Bernstein, K. Design space exploration for 3D architectures. ACM J. Emerg. Technol.
Comput. Syst. (JETC) 2006, 2, 65–103. [CrossRef]

11. Kang, U.; Chung, H.J.; Heo, S.; Ahn, S.H.; Lee, H.; Cha, S.H.; Ahn, J.; Kwon, D.; Kim, J.H.; Lee, J.W.; et al. 8Gb 3D
DDR3 DRAM using through-silicon-via technology. In Proceedings of the 2009 IEEE International Solid-State
Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 130–131.
[CrossRef]

12. Oh, R.; Lee, B.; Shin, S.W.; Bae, W.; Choi, H.; Song, I.; Lee, Y.S.; Choi, J.H.; Kim, C.W.; Jang, S.J.; et al. Design
technologies for a 1.2V 2.4Gb/s/pin high capacity DDR4 SDRAM with TSVs. In Proceedings of the 2014
Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13 June 2014; pp. 1–2. [CrossRef]

13. JEDEC. HIGH BANDWIDTH MEMORY (HBM) DRAM; JEDEC: Arlington, VA, USA, 2012.
14. Pawlowski, J.T. Hybrid Memory Cube (HMC). In Proceedings of 2011 IEEE Hot Chips 23 Symposium (HCS),

Stanford, CA, USA, 17–19 August 2011.
15. Zhang, Z.; Zhu, Z.; Zhang, X. Cached DRAM for ILP processor memory access latency reduction. IEEE Micro

2001, 21, 22–32. [CrossRef]
16. Kimuta, T.; Takeda, K.; Aimoto, Y.; Nakamura, N.; Iwasaki, T.; Nakazawa, Y.; Toyoshima, H.; Hamada, M.;

Togo, M.; Nobusawa, H.; et al. 64 Mb 6.8 ns random ROW access DRAM macro for ASICs. In Proceedings of the
1999 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17 February 1999; pp. 416–417.
[CrossRef]

17. Micron Technology. RLDRAM 2 and 3 Specifications; Micron Technology: Boise, ID, USA, 2004.
18. Sharroush, S.M.; Abdalla, Y.S.; Dessouki, A.A.; El-Badawy, E.S.A. Dynamic random-access memories without

sense amplifiers. e i Elektrotechnik und Informationstechnik 2012, 129, 88–101. [CrossRef]
19. Lee, D.; Kim, Y.; Seshadri, V.; Liu, J.; Subramanian, L.; Mutlu, O. Tiered-latency DRAM: A low latency and low

cost DRAM architecture. In Proceedings of the 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), Shenzhen, China, 23–27 February 2013; pp. 615–626. [CrossRef]

20. Son, Y.H.; Seongil, O.; Ro, Y.; Lee, J.W.; Ahn, J.H. Reducing Memory Access Latency with Asymmetric DRAM
Bank Organizations. In Proceedings of the 40th Annual International Symposium on Computer Architecture,
Tel-Aviv, Israel, 23–27 June 2013; ACM: New York, NY, USA, 2013; pp. 380–391. [CrossRef]

21. Kim, Y.; Seshadri, V.; Lee, D.; Liu, J.; Mutlu, O. A case for exploiting subarray-level parallelism (SALP) in DRAM.
In Proceedings of the 2012 39th Annual International Symposium on Computer Architecture (ISCA), Portland,
OR, USA, 9–13 June 2012; pp. 368–379. [CrossRef]

http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1145/373574.373576
http://dx.doi.org/10.1145/2745844.2745900
http://dx.doi.org/10.1109/TKDE.2015.2427795
http://dx.doi.org/10.1145/1148015.1148016
http://dx.doi.org/10.1109/ISSCC.2009.4977342
http://dx.doi.org/10.1109/VLSIC.2014.6858367
http://dx.doi.org/10.1109/40.946676
http://dx.doi.org/10.1109/ISSCC.1999.759331
http://dx.doi.org/10.1007/s00502-012-0083-3
http://dx.doi.org/10.1109/HPCA.2013.6522354
http://dx.doi.org/10.1145/2485922.2485955
http://dx.doi.org/10.1109/ISCA.2012.6237032


Micromachines 2019, 10, 124 15 of 15

22. Muralimanohar, N.; Balasubramonian, R.; Jouppi, N.P. CACTI 6.0: A Tool to Model Large Caches.
In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, Chicago, IL, USA,
1–5 December 2007.

23. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.;
Sardashti, S.; et al. The Gem5 Simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

24. Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. DRAMSim2: A Cycle Accurate Memory System Simulator. IEEE Comput.
Archit. Lett. 2011, 10, 16–19. [CrossRef]

25. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 2008 International Conference on Parallel Architectures and Compilation
Techniques (PACT), Toronto, ON, Canada, 25–29 October 2008; pp. 72–81.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/L-CA.2011.4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and In-Dynamic Random Access Memory (DRAM) Cache Architecture
	Exploration of in-DRAM Cache Management
	Trade-Off between Capacity and Latency
	Trade-Off between Tag Size and Power Consumption

	Proposed In-DRAM Cache Management Algorithms
	Critical Data Detection and Evaluation Scheme
	Power-Aware in-DRAM Cache Management Algorithm

	Experimental Results and Discussion
	Conclusions
	References

